Проверочная работа по теме: «Элементы специальной теории относительности, волновая оптика»

1. Разность фаз двух когерентных волн с длиной волны λ равна π . Какова минимальная разность хода этих волн?

Ombem: $\frac{\lambda}{2}$.

Решение. Минимальная разность хода когерентных волн, приходящих в данную точку в противофазе,

$$\Delta = \frac{\Delta \varphi}{2\pi} \lambda = \frac{\pi}{2\pi} \lambda = \frac{\lambda}{2}.$$

2. Оптическая разность хода двух монохроматических лучей в воздухе 3 мкм. Какова будет разность хода между ними в воде? Показатель преломления воды 4/3.

Ответ: 4 мкм.

Решение. Разность хода лучей в воздухе $\Delta_1 = L_2 - L_1$, в воде $\Delta_2 = nL_2 - nL_1 = n(L_2 - L_1) = n\Delta_1$. $\Delta_2 = \frac{4}{3} \cdot 3 = 4$ (мкм).

3. Плоская монохроматическая волна нормально падает на дифракционную решётку, при этом максимум 2-го порядка наблюдается под углом 30°. То же самое излучение на другой дифракционной решётке дает максимум 2-го порядка под углом 45°. Чему равен квадрат отношения периодов решеток $\left(\frac{d_1}{d_2}\right)^2$?

Ответ: 2.

Решение. Условие наблюдения максимума в дифракционном спектре на решётке имеет вид: $d \sin \alpha = n\lambda$, где n – порядковый номер максимума, d – постоянная (период) решётки. Запишем условие задачи: $d_1 \sin 30^\circ = 2\lambda$, $d_2 \sin 45^\circ = 2\lambda$.

Деля уравнения друг на друга, находим: $\frac{d_1}{d_2} = \frac{\sin 45^\circ}{\sin 30^\circ} = \sqrt{2}$, откуда $\left(\frac{d_1}{d_2}\right)^2 = 2$.

4. Источник света приближается к приёмнику света со скоростью $\upsilon = c$, где $c = 3 \cdot 10^8$ м/с – скорость света в вакууме. Приёмник фиксирует, что свет распространялся в пространстве со скоростью...

Ответ: 3·10⁸ м/с.

Решение. Скорость света не зависит ни от скорости его источника, ни от скорости его приёмника. Она в вакууме всегда равна $c = 3 \cdot 10^8$ м/с.

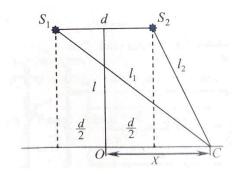
5. Световой луч в вакууме проходит за время t расстояние 60 см; в некоторой жидкости за вдвое большее время - 80 см. Чему равен показатель преломления жидкости?

Ответ: 1,5

Решение. Скорость света в прозрачной среде $v=\frac{c}{n}$, где c – скорость света в пустоте, n – показатель преломления среды. Тогда в пустоте $S_1=ct$, а в среде $S_2=v\cdot 2t$. Деля уравнения друг на друга, находим: $\frac{S_1}{S_2}=\frac{n}{2}$, откуда n=1,5.

6. Расстояние между двумя когерентными источниками света S_1 и S_2 , находящимися в воздухе (n=1), d=0.15 мм. Расстояние от этих источников l=4.8 м. Определите оптическую

разность хода лучей, = приходящих от источников S_1 и S_2 в точку экрана C, если OC = 16 мм.



Omeem: $\Delta_{12} = 0.5 \cdot 10^{-6} \text{ M}.$

Решение. Поскольку лучи идут в воздухе, оптическая разность хода будет равна геометрической. Из рисунка видно, что $l_1^2 = l^2 + \left(X + \frac{d}{2}\right)^2$, $l_2^2 = l^2 + \left(X - \frac{d}{2}\right)^2$.

Вычтем из первого уравнения второе: $l_1^2 - l_2^2 = \left(X + \frac{d}{2}\right)^2 - \left(X - \frac{d}{2}\right)^2$,

или
$$(l_1 + l_2)(l_1 - l_2) = \left(X + \frac{d}{2} + X - \frac{d}{2}\right)\left(X + \frac{d}{2} - X + \frac{d}{2}\right).$$

Так как d и X малы по сравнению с l (что всегда справедливо при интерференции света), сумму (l_1+l_2) приближенно можно заменить на 2l , а $n(l_1-l_2)=\Delta_{12}$ есть искомая разность хода. Тогда получим $\frac{2l\Delta_{12}}{n}=2X\cdot 2\cdot \frac{d}{2}$; $\Delta_{12}=\frac{Xd}{l}n$;

$$\Delta_{12} = \frac{1.5 \cdot 10^{-4} \cdot 1.6 \cdot 10^{-2} \cdot 1}{4.8} = 0.5 \cdot 10^{-6} \text{m}.$$

7. Сколько времени для жителя Земли и космонавтов займет космическое путешествие о звезды и обратно на ракете, летящей со скоростью v = 0,99с? Свет от звезды до Земли идет в течение t = 40 лет (по земным часам).

Ответ: $\tau = 80.8$ года $\tau_0 = 11.4$ года.

Решение. Расстояние от звезды до Земли ct, с учетом того, что ракета долетит до звезды и вернётся обратно, время путешествия относительно Земли $\tau = \frac{2ct}{0,99c} = 80,8$ года. Тогда промежуток времени относительно ракеты $\tau_0 = \tau \sqrt{1 - \frac{v^2}{c^2}} = 11,4$ года. Таким образом, для космонавтов путешествие продлится 11,4 года, на Земле же пройдет 80,8 года.

8. Космическая частица движется со скоростью v = 0.95c, где c скорость света в вакууме. Какой промежуток времени τ соответствует одной микросекунде «собственного времени» частицы?

Ombem: m = 3.3 MKC.

Решение. Запишем релятивистское соотношение для интервалов времени между событиями:

$$\tau = \frac{\tau_0}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{1}{\sqrt{1 - 0.95^2}} = 3.3 \text{ MKC}.$$

9. На ракете, летящей со скоростью u = 0.9с, установлен ускоритель, сообщающий частицам скорость v = 0.8с относительно ракеты (по направлению движения). Найдите скорость частиц v в системе отсчёта, связанной с «неподвижными звёздами». Решите задачу и для случая, когда частицы движутся в противоположную сторону.

Omsem:
$$v_1 = 2,97 \cdot 10^8 \frac{\text{M}}{\text{c}}, v_2 = 1,1 \cdot 10^8 \frac{\text{M}}{\text{c}}$$

Решение. В соответствии с релятивистским законом сложения скоростей:

$$v_1 = \frac{v + u}{1 + \frac{v \cdot u}{c^2}} = \frac{1,7c}{1,72} = 0,99c = 2,97 \cdot 10^8 \frac{M}{c}.$$

В случае, когда частицы движутся в противоположную сторону, проекция скорости 2 частиц в движущейся системе отсчёта на направление движения ракеты отрицательна.

Следовательно, в этом случае
$$v_2 = \frac{-v + u}{1 - \frac{v \cdot u}{c^2}} = \frac{0.1c}{0.28} = 0.36 \cdot c = 1.1 \cdot 10^8 \frac{M}{c}$$

10. Для тела, движущегося со скоростью υ , используя СТО, найдите чему равно выражение $E^2-p^2c^2.$

Omsem: $E^2 - p^2c^2 = m_0^2c^4$

Решение. Так как $E=mc^2=\frac{m_0\ c^2}{\sqrt{1-\frac{v^2}{c^2}}}$, а $p=mv=\frac{m_0\ v}{\sqrt{1-\frac{v^2}{c^2}}}$, то возведя обе части каждого уравнения в квадрат, получим: $E^2=\frac{m_0^2c^4}{1-\frac{v^2}{2}}$; $p^2=\frac{m_0^2v^2}{1-\frac{v^2}{2}}$.

Умножим теперь левую и правую части выражения для релятивистского импульса на c^2 и вычтем из E^2 :

$$E^{2}-p^{2}c^{2}=\frac{m_{0}^{2}c^{4}}{1-\frac{v^{2}}{c^{2}}}=\frac{m_{0}^{2}v^{2}c^{2}}{1-\frac{v^{2}}{c^{2}}}=\frac{m_{0}^{2}c^{4}(c^{2}-v^{2})}{c^{2}-v^{2}}=m_{0}^{2}c^{4}.$$